

Structural Optimization for Blast Mitigation Using HCA

University of Notre Dame

John Goetz, Huade Tan, Andrés Tovar, John Renaud

maintaining the data needed, and including suggestions for reducin	completing and reviewing the colle g this burden, to Washington Head ould be aware that notwithstanding	ction of information. Send commen quarters Services, Directorate for In	ts regarding this burden estimation Operations and Rep	ate or any other aspect orts, 1215 Jefferson Da	vis Highway, Suite 1204, Arlington	
1. REPORT DATE 07 AUG 2009		2. REPORT TYPE N/A		3. DATES COVE	ERED	
4. TITLE AND SUBTITLE Structural Optimization for Blast Mitigation Using HCA				5a. CONTRACT NUMBER W56 HZV-08-C-0236 (SimBRS)		
				5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S) John Goetz; Huande Tan; Andres Tovar; John Renaud				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Univeristy of Notre Dame				8. PERFORMING ORGANIZATION REPORT NUMBER 20151		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI				10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC		
48397-5000				11. SPONSOR/MONITOR'S REPORT NUMBER(S) 20151		
12. DISTRIBUTION/AVAI Approved for pub	ILABILITY STATEMENT lic release, distribut	tion unlimited				
	OTES As Ground Vehicle S , Michigan, USA, T	•			m (GVSETS), 17 22	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC		17. LIMITATION	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	OF PAGES 21	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Introduction: **Design For Blast Mitigation**

Crew

Seat

- The blast mitigation design problem can be reduced sub problems as given
- Each reduction in problem formulation feeds back into the system above
- Design objectives for each sub problem are selected with the overall problem in mind
- Vehicle
 - Design for crew and critical component survivability
 - Sub System
 - Design for mechanical isolation between occupant and blast
- Component
 - Design for minimum energy transfer from blast wave
- Sub Component
 - Design for energy dissipation and distribution
- Microstructure
- Define damage and material parameters for energy absorption

 AlonBrill, Boaz Cohen and Paul A. Du Bois, SIMULATION OF A MINE BLAST EFFECT ON THE OCCUPANTS OF

AN APC. 6th European LS-DYNA Users' Conference

Y Z X

UNCLASSIFIED

Composite armor

Panel

Landmine

Introduction: Injury Criterion

- Injury criteria of vehicle occupants due to mechanical input taken as the design objective of the vehicle design problem
- Blast impulse is key the metric which drives injury occurrences
- Compressive forces and vertical acceleration taken to be defining factor in injury accumulation

HYBRID III Simulant	Symbol (units)	Assessment Reference Values	
Response Parameter			
Head Injury Criteria	HIC	750 ~5% risk of brain injury	
Head resultant acceleration	A (G)	150 G (2ms)	
Neck forward flexion moment	+ My (N-m)	190 N-m	
Neck rearward extension moment	- My (N-m)	57 N-m	
Chest resultant acceleration	A (G)	60 G (3ms), 40 G (7ms)	
Lumbar spine axial compression force	Fz (N)	3800 N (30ms), 6672 N (0ms)	
Lumbar spine flexion moment	+ My (N-m)	1235 N-m	
Lumbar spine extension moment	- My (N-m)	370 N-m	
Pelvis vertical acceleration	Az (G)	15, 18, 23 G (low, med, high risk)	
Tibia axial compressive force	F (N)	F/Fc - M/Mc < 1	
combined with Tibia bending moment	M (N-m)	where Fc=35,584N and Mc=225N-m	
Femur or Tibia axial compression force	Fz (N)	7562 N (10ms), 9074 N (0ms)	

Occupant Crash Protection Handbook for Tactical Ground Vehicles 2000

Ala Tabieiand GauravNilakantan, Reduction of Acceleration Induced Injuries from Mine Blasts under Infantry Vehicles University of Cincinnati

HCA Overview: Topology Optimization

- Topology optimization process redistributes material in the design domain to obtain a concept design
- Hybrid Cellular Automata (HCA) algorithm using uniform internal energy density as a design objective
- Nonlinear transient analysis, utilizing LS-Dyna for finite element analysis (FEA)

Topology optimization to generate concept designs

HCA Overview: Algorithm

- A continuum-based topology optimization
 - First utilized for bone remodeling (Tovar'04)
 - Extend bone remodeling technique for crashworthiness design (Patel'07)
- HCA = Cellular Automata (CA) + FEM
- CAs are characterized by local interactions

Global Formulation

find
$$\underline{x}$$

s.t. $\underline{h}(\underline{x}) = \underline{0}$
 $\underline{g}(\underline{x}) \leq \underline{0}$
 $\underline{H}(\underline{x}) = \underline{0}$
 $\underline{G}(\underline{x}) \leq \underline{0}$
 $x_i \in \{0,1\}, \quad i = 1, \dots, n,$

Local Formulation

find
$$x_i$$

s.t. $y_i(x_i) - y^* = 0$
 $x_i \in \{0, 1\},$

Neighborhoods

vonNeumann (2D: N=4, 3D: N=6)

Moore (2D: N=8, 3D: N=26)

Local CA rules and basic control theory is used to distribute material

HCA Overview: Algorithm

MSTV MODELING AND SIMULATION, TESTING AND VALIDATION

Modification of HCA for Blast: Field Variable Selection

Field Variable:

- Original crasHCA algorithm only utilized Internal Energy (IE) at the final time step
 - IE at the final time is highly dependent on the simulation termination time
 - Resulting topology is drastically different depending on the selected end time
- Changed method for blast to use the IE at all time steps.

$$S_i = \int_{t=0}^{t=t_f} U_i(t) \, dt$$

 Will utilize the concept of a fully stressed design as implemented in the Crash version of the HCA algorithm.

Modification of HCA for Blast: Johnson-Cook Material Model

Material Card Selection

- Piecewise-linear elastic plastic material card:
 - Quasi-static
 - Hardening
 - Plastic deformation
- Johnson-Cook:
 - Can be used for dynamic loading situations
 - Strain rate effects
 - Temperature effects

$$E = E_0 x^p \text{ and } G = G_0 x^p$$

$$\sigma = [A + B\varepsilon^n][1 + C \ln \dot{\varepsilon}][1 - T^{*m}]$$

$$A = A_0 x^q$$
, $B = B_0 x^q$, $C = C_0 x^q$

Johnson-Cook: Effect of density on Internal Energy

Modification of HCA for Blast: CONWEP Blast Model

Load Type:

- Began using the CONWEP algorithm for the blast model in the 3-D solid element HCA method.
 - Quick Analysis time (relative to MMALE)
 - Required minimal changes to the HCA algorithm
- The objective is to design substructure that responds to a blast event in a desired manner. CONWEP can be used in this scenario since we are only looking at the response of a small piece of structure rather than the whole object.

Figure 1. Definition of variables in the US Army TACOM Impulse Model (Adapted from Westine *et al.*, 1985).

Implementation

As a proof of concept, a rectangular design domain was created to represent a piece of armor.

- Design domain is 40 x 40 x 10 cm aluminum (represents armor substructure)
- Top layer is 40 x 40 x 1 cm ceramic (represents ceramic top plate)
- Domain and top plate have fixed x, y, and z displacement boundary conditions on all sides.
- Blast is positioned 100 cm up from origin (89 cm from top center of plate)
- Hourglass control is included to help prevent complex sound speeds arising in low density elements
- The target mass is set to be 50% of a full design domain

- Generated Topology to be compared against a baseline model that is full density, but half as thick.
- The top of the baseline design will be 94 cm from the blast source (i.e. the base of the domain will be the same distance in both cases)

Results: Integrated IE Objective

Results: Integrated IE Objective

MSTV MODELING RND SIMULATION, TESTING RND VALIDATION

- Resulting topology has mass where it would be expected and satisfies the mass target constraint.
- There is an order of magnitude improvement in the mean nodal acceleration of the bottom of the design domain versus the baseline case.
 - Peak acceleration is misleading because of nodes that are being unrealistically accelerated relative to their neighbors

Final Remarks

 This investigation showed that the HCA algorithm could be modified to produce topologies that help to mitigate the acceleration transferred to the occupant from a blast loading

• Future work:

- Investigate further the use of IE as the field variable in the optimization process
- Investigation of other field variables to drive the optimization that are more appropriately related to acceleration
- Mesh refinement study
- Continued work to improve convergence and to mitigate errors in the LS-DYNA runs (i.e. complex sound speeds arising in low density elements)

Questions?

Acknowledgments:

This research was performed under government contract from the US Army TARDEC, through a subcontract with Mississippi State University, for the Simulation Based Reliability and Safety (SimBRS) research program.

Backup

Company September 10 and 10 an

Verification of Monotonic Relationship between SED and Mass Density

MODELING AND SIMULATION, TESTING AND VALIDATION

- The Piecewise-linear elastic-plastic model was shown by Dr. Patel' to have a monotonic relationship between SED and mass density under the SIMP penalization method
- A similar study was conducted to determine if penalizing the Johnson-Cook model also yielded a monotonic relationship between SED and mass density.
 - Setup as a single solid LS-DYNA cube element under a rapid fixed loading
- As in the standard SIMP scheme, elastic modulus (and shear modulus) is
 — Mass and penalization factors are varied.
 penalized according to:

$$E = E_0 x^p$$
 and $G = G_0 x^p$

Johnson-Cook model calculates a von-mises flow stress according to:

$$\sigma = [A + B\varepsilon^n][1 + C\ln\dot{\varepsilon}][1 - T^{*m}]$$

• Penalizing this von-mises flow stress is akin to penalizing the yield stress. This is done by penalizing the parameters A, B, and C.

Johnson-Cook Material Model: Penalization

MODELING AND SIMULATION, TESTING AND VALIDATIO

 As in the standard SIMP scheme, elastic modulus (and shear modulus) is penalized according to:

$$E = E_0 x^p$$
 and $G = G_0 x^p$

 The Johnson-Cook model calculates a von-mises flow stress according to.

$$\sigma = [A + B\varepsilon^n][1 + C \ln \dot{\varepsilon}][1 - T^{*m}]$$

 Penalizing this von-mises flow stress is akin to penalizing the yield stress. This is done by penalizing the parameters A, B, and C.

- Under a constant load, the material does not behave monotonically under any penalization scheme
- Depending on choice of p and q, we may have to significantly increase the minimum density allowed in the CA and FE models

 Under fixed displacement the IED appears to have a monotonic relationship with relative density

Blast loadings, however, are not fixed displacement problems.

Modification of HCA for Blast: CONWEP Blast Model

- CONWEP blast model: Load-Blast function in Ls-Dyna, is an implementation of the hemispherical blast models of Kingery and Bulmash.
- Empirical blast-loading model rather than explicitly simulating the progress of the shock wave from the high explosive through the air and its interaction with the structure
- Does not account for pressure confinement properties provided by imbedding explosive charge in soil.
- Scaling charge sizes for better agreement accepted, but applications to complete structures limited due to improperly modeled load distributions
- More complex structures and interaction of detonation products and debris requires a more sophisticated fluid structure formulation.

$$P(\tau) = P_{\rm r} \cdot \cos^2 \theta + P_i \cdot (1 + \cos^2 \theta - 2\cos \theta)$$

- Introduction
- Overview of Hybrid Cellular Automata (HCA)
- Methodology
 - Field Variable
 - Material Model
 - Blast Model
- Implementation
- Results

